95 research outputs found

    Sharing HOL4 and HOL Light proof knowledge

    Full text link
    New proof assistant developments often involve concepts similar to already formalized ones. When proving their properties, a human can often take inspiration from the existing formalized proofs available in other provers or libraries. In this paper we propose and evaluate a number of methods, which strengthen proof automation by learning from proof libraries of different provers. Certain conjectures can be proved directly from the dependencies induced by similar proofs in the other library. Even if exact correspondences are not found, learning-reasoning systems can make use of the association between proved theorems and their characteristics to predict the relevant premises. Such external help can be further combined with internal advice. We evaluate the proposed knowledge-sharing methods by reproving the HOL Light and HOL4 standard libraries. The learning-reasoning system HOL(y)Hammer, whose single best strategy could automatically find proofs for 30% of the HOL Light problems, can prove 40% with the knowledge from HOL4

    ENIGMA: Efficient Learning-based Inference Guiding Machine

    Full text link
    ENIGMA is a learning-based method for guiding given clause selection in saturation-based theorem provers. Clauses from many proof searches are classified as positive and negative based on their participation in the proofs. An efficient classification model is trained on this data, using fast feature-based characterization of the clauses . The learned model is then tightly linked with the core prover and used as a basis of a new parameterized evaluation heuristic that provides fast ranking of all generated clauses. The approach is evaluated on the E prover and the CASC 2016 AIM benchmark, showing a large increase of E's performance.Comment: Submitted to LPAR 201

    Matching concepts across HOL libraries

    Full text link
    Many proof assistant libraries contain formalizations of the same mathematical concepts. The concepts are often introduced (defined) in different ways, but the properties that they have, and are in turn formalized, are the same. For the basic concepts, like natural numbers, matching them between libraries is often straightforward, because of mathematical naming conventions. However, for more advanced concepts, finding similar formalizations in different libraries is a non-trivial task even for an expert. In this paper we investigate automatic discovery of similar concepts across libraries of proof assistants. We propose an approach for normalizing properties of concepts in formal libraries and a number of similarity measures. We evaluate the approach on HOL based proof assistants HOL4, HOL Light and Isabelle/HOL, discovering 398 pairs of isomorphic constants and types

    Conceptual modelling: Towards detecting modelling errors in engineering applications

    Get PDF
    Rapid advancements of modern technologies put high demands on mathematical modelling of engineering systems. Typically, systems are no longer “simple” objects, but rather coupled systems involving multiphysics phenomena, the modelling of which involves coupling of models that describe different phenomena. After constructing a mathematical model, it is essential to analyse the correctness of the coupled models and to detect modelling errors compromising the final modelling result. Broadly, there are two classes of modelling errors: (a) errors related to abstract modelling, eg, conceptual errors concerning the coherence of a model as a whole and (b) errors related to concrete modelling or instance modelling, eg, questions of approximation quality and implementation. Instance modelling errors, on the one hand, are relatively well understood. Abstract modelling errors, on the other, are not appropriately addressed by modern modelling methodologies. The aim of this paper is to initiate a discussion on abstract approaches and their usability for mathematical modelling of engineering systems with the goal of making it possible to catch conceptual modelling errors early and automatically by computer assistant tools. To that end, we argue that it is necessary to identify and employ suitable mathematical abstractions to capture an accurate conceptual description of the process of modelling engineering systems

    A Vernacular for Coherent Logic

    Full text link
    We propose a simple, yet expressive proof representation from which proofs for different proof assistants can easily be generated. The representation uses only a few inference rules and is based on a frag- ment of first-order logic called coherent logic. Coherent logic has been recognized by a number of researchers as a suitable logic for many ev- eryday mathematical developments. The proposed proof representation is accompanied by a corresponding XML format and by a suite of XSL transformations for generating formal proofs for Isabelle/Isar and Coq, as well as proofs expressed in a natural language form (formatted in LATEX or in HTML). Also, our automated theorem prover for coherent logic exports proofs in the proposed XML format. All tools are publicly available, along with a set of sample theorems.Comment: CICM 2014 - Conferences on Intelligent Computer Mathematics (2014

    Concrete Semantics with Coq and CoqHammer

    Full text link
    The "Concrete Semantics" book gives an introduction to imperative programming languages accompanied by an Isabelle/HOL formalization. In this paper we discuss a re-formalization of the book using the Coq proof assistant. In order to achieve a similar brevity of the formal text we extensively use CoqHammer, as well as Coq Ltac-level automation. We compare the formalization efficiency, compactness, and the readability of the proof scripts originating from a Coq re-formalization of two chapters from the book

    Premise Selection and External Provers for HOL4

    Full text link
    Learning-assisted automated reasoning has recently gained popularity among the users of Isabelle/HOL, HOL Light, and Mizar. In this paper, we present an add-on to the HOL4 proof assistant and an adaptation of the HOLyHammer system that provides machine learning-based premise selection and automated reasoning also for HOL4. We efficiently record the HOL4 dependencies and extract features from the theorem statements, which form a basis for premise selection. HOLyHammer transforms the HOL4 statements in the various TPTP-ATP proof formats, which are then processed by the ATPs. We discuss the different evaluation settings: ATPs, accessible lemmas, and premise numbers. We measure the performance of HOLyHammer on the HOL4 standard library. The results are combined accordingly and compared with the HOL Light experiments, showing a comparably high quality of predictions. The system directly benefits HOL4 users by automatically finding proofs dependencies that can be reconstructed by Metis

    Hammering towards QED

    Get PDF
    This paper surveys the emerging methods to automate reasoning over large libraries developed with formal proof assistants. We call these methods hammers. They give the authors of formal proofs a strong “one-stroke” tool for discharging difficult lemmas without the need for careful and detailed manual programming of proof search. The main ingredients underlying this approach are efficient automatic theorem provers that can cope with hundreds of axioms, suitable translations of the proof assistant’s logic to the logic of the automatic provers, heuristic and learning methods that select relevant facts from large libraries, and methods that reconstruct the automatically found proofs inside the proof assistants. We outline the history of these methods, explain the main issues and techniques, and show their strength on several large benchmarks. We also discuss the relation of this technology to the QED Manifesto and consider its implications for QED-like efforts.Blanchette’s Sledgehammer research was supported by the Deutsche Forschungs- gemeinschaft projects Quis Custodiet (grants NI 491/11-1 and NI 491/11-2) and Hardening the Hammer (grant NI 491/14-1). Kaliszyk is supported by the Austrian Science Fund (FWF) grant P26201. Sledgehammer was originally supported by the UK’s Engineering and Physical Sciences Research Council (grant GR/S57198/01). Urban’s work was supported by the Marie-Curie Outgoing International Fellowship project AUTOKNOMATH (grant MOIF-CT-2005-21875) and by the Netherlands Organisation for Scientific Research (NWO) project Knowledge-based Automated Reasoning (grant 612.001.208).This is the final published version. It first appeared at http://jfr.unibo.it/article/view/4593/5730?acceptCookies=1

    ProofWatch: Watchlist Guidance for Large Theories in E

    Full text link
    Watchlist (also hint list) is a mechanism that allows related proofs to guide a proof search for a new conjecture. This mechanism has been used with the Otter and Prover9 theorem provers, both for interactive formalizations and for human-assisted proving of open conjectures in small theories. In this work we explore the use of watchlists in large theories coming from first-order translations of large ITP libraries, aiming at improving hammer-style automation by smarter internal guidance of the ATP systems. In particular, we (i) design watchlist-based clause evaluation heuristics inside the E ATP system, and (ii) develop new proof guiding algorithms that load many previous proofs inside the ATP and focus the proof search using a dynamically updated notion of proof matching. The methods are evaluated on a large set of problems coming from the Mizar library, showing significant improvement of E's standard portfolio of strategies, and also of the previous best set of strategies invented for Mizar by evolutionary methods.Comment: 19 pages, 10 tables, submitted to ITP 2018 at FLO

    Capturing Hiproofs in HOL Light

    Full text link
    Hierarchical proof trees (hiproofs for short) add structure to ordinary proof trees, by allowing portions of trees to be hierarchically nested. The additional structure can be used to abstract away from details, or to label particular portions to explain their purpose. In this paper we present two complementary methods for capturing hiproofs in HOL Light, along with a tool to produce web-based visualisations. The first method uses tactic recording, by modifying tactics to record their arguments and construct a hierarchical tree; this allows a tactic proof script to be modified. The second method uses proof recording, which extends the HOL Light kernel to record hierachical proof trees alongside theorems. This method is less invasive, but requires care to manage the size of the recorded objects. We have implemented both methods, resulting in two systems: Tactician and HipCam
    • 

    corecore